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DPCM: Basic Operation
Encode each difference into r bits



DPCM: Linear Prediction Filter 



DPCM: Linear Prediction Filter 



DPCM: Linear Prediction Filter 

𝑅 1 = 𝑅 𝑇𝑠
𝑅 2 = 𝑅 2𝑇𝑠



DPDM: Transmitter and Receiver
Encode each difference into r bits



DPCM: Autocorrelation Function

R(0.5)

R(0)

0.5-0.5 𝝉

R(0) =A
R(0.5)=A/2
R(1)=0

R is an even function



DPCM: Concluding Summary

• At transmitter:
• Samples are known

• Estimate is known since estimate is a 
linear function of the samples.

• Transmit

• Difference= Sample – Estimate

• At receiver: 
• Receive Difference

• Construct Estimate

• Sample = Estimate + Difference

Sample

Estimate 
of Sample

Difference between 
sample and its estimate



Delta Modulation
• Remark: Before you attend this lecture, please attend the previous one on DPCM.

• Delta modulation (DM), is a special case of Differential Pulse Code Modulation (DPCM).

• The order of the prediction filter in delta modulation is p=1 and represents only the 
quantized value of the previous sample. The number of quantization levels is two.

• In this scheme, the system transmits the sign of the difference between the current sample 
and the quantized value of the previous sample. The sign is represented by a single bit.

1

DPCM Transmitter

DPCM Receiver

Prediction in DPCM is made 
based on p previous samples. 
In delta modulation p=1. 



Delta Modulation: Basic Idea
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Delta Modulation: The Transmitter Side

3

Analog value of the error

Quantized Error +∆ 
or - ∆

• The transmitter side consists of the comparator, the one bit quantizer, the encoder, 
and the accumulator.

• The accumulator (an integrator) adds the new quantized difference (+∆ or -∆) to 
the old predicted value to generate the new predicted value.

• The output of the predictor is a staircase approximation of the message signal.

Predicted Value 

Digit 1 if error = +∆
Digit 0 if error = - ∆



Delta Modulation: The Transmitter Side
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Analog value of the error

Quantized Error +∆ 
or - ∆

Predicted Value 

Digit 1 if error = +∆
Digit 0 if error = - ∆

 

     

   

     

  

Let ( )  ,  0, 1, 2,

where is the sampling period and ( ) is a sample of ( ).  The error signal is 
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where  is the quantizer output ,  is the quantized version of ,  and  is the step sizeq qm n e n e n 

𝒎𝒒[𝒏 − 𝟏]



Delta Modulation: The Receiver Part
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𝒎𝒒[𝒏 − 𝟏]

𝐞𝐪 𝐧 = +∆ 𝐨𝐫 − ∆ 𝒎𝒒[𝒏]

• The receiver part consists of the decoder, the accumulator, and a low pass filter.
• The decoder interprets a zero as −∆ and one as +∆. These deltas represent the 

differences between current and previous samples.
• The accumulator regenerates the predicted staircase signal.
• The low pass filter smoothens the predicted signal by removing high frequency 

components. 
• The reconstructed signal 𝑚𝑞(𝑡) is the same as the predicted signal used at the transmitter 

side



Delta Modulation: The Receiver Part
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𝒎𝒒[𝒏 − 𝟏]

𝒎𝒒[𝒏]
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𝐞𝐪 𝐧 = +∆ 𝐨𝐫 − ∆



Delta Modulation: Basic Operation

7

m(t): analog input signal

∆



Slope Overload Distortion and Granular Noise 
• Slope overload distortion is due to the fact that the staircase approximation mq(t) can't 

follow closely the actual curve of the message signal m(t ). In contrast to slope-overload 
distortion, granular noise occurs when  is too large relative to the local slope 
characteristics of m(t). granular noise is similar to quantization noise in PCM.

• It seems that a large  is needed for rapid variations of m(t) to reduce the slope-overload 
distortion and a small  is needed for slowly varying m(t) to reduce the granular noise. The 
optimum  can only be a compromise between the two cases.

• To satisfy both cases, an adaptive DM is needed, where the step size  can be adjusted in 
accordance with the input signal m(t) (not to be covered in this lecture)



Slope Overload  
Slope overload occurs when the signal changes at a rate faster than that of the predicted signal.
To avoid slope overload, we must have 

∆

𝑇𝑠
≥ 𝑚𝑎𝑥|

𝑑𝑚(𝑡)

𝑑𝑡
|

When m t = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡), the condition for avoiding slope overload becomes
∆

𝑇𝑠
≥ 2𝜋𝐴𝑚𝑓𝑚 ;  OR     ∆≥ 2𝜋𝑇𝑠𝐴𝑚𝑓𝑚

As we can see, slope overload depends on three factors:
• Sampling frequency (larger sampling, reduces the effect)
• Message amplitude (larger amplitude, increases the effect)
• Message frequency (larger message frequency, increases the effect



Adaptive Delta Modulation

• The step size in delta modulation affects the quality of the transmitted 
waveform (slope overload or granular noise).

• A larger step-size is needed in the steep slope of modulating signal

• a smaller step size is needed where the message has a small slope

• In adaptive delta modulation, the step size is adjusted via a feedback  
control signal so as to reduce both slope overload and granular noise 
effects. 

• ADM quantizes the difference between the value of the current sample 
and the predicted value of the next sample. It uses a variable step height 
to predict the next values, for the faithful reproduction of the fast varying 
values.
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Delta Modulation: Example 

• Draw the output of the DM given that the input corresponds to 
𝑥 𝑡 = 1.1𝑡 + 0.05 when the input is sampled at t = 0, 1, 2, 3, 4, 5, … 
and Δ=1.



Delta Demodulation: Example 
• Reconstruct a staircase signal at the receiver side of a delta demodulator with Δ 

= 0.1V, when the received data sequence is 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1. 
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Line Encoding 

 The assignment of pulses (an electrical signal) to the binary digits that come out of 

the PCM or DPCM system. 

 Line coding encodes the bit stream for transmission through a line, or a cable. 

 It is used for communications between the CPU and peripherals, and for short-

distance baseband communications, such as the Ethernet. 

 

 

Two Design Considerations 

 DC Component in Line Coding: Some line coding schemes have a residual (DC) 

component, which is generally undesirable. 

o Transformers do not allow passage of DC component. 

o DC component  ⇒ extra energy – useless! 

 

 Self-Synchronization (clocking): To correctly interpret signal received from 

sender, receiver’s bit interval must exactly correspond to sender’s bit intervals 

o If receiver clock is faster/slower, bit intervals not matched ⇒ receiver 

misinterprets signal 

o Self-synchronizing digital signals include timing information in itself, to 

indicate the  beginning & end of each pulse 
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Unipolar Line Coding (Unipolar non-return to zero) 

 Uses only one non-zero and one zero voltage level to represent binary digits 1 and 

0 

 Simple to implement, but obsolete due to two main problems: 

o Presence of a DC component. 

o Lack of synchronization for long series of 1-s or 0-s 

 

Polar Line Coding: Polar non-return to zero 

 Uses two non-zero voltage level to represent digits 1 and digit 0. +ve for 1 and –ve 

for 0 

 No DC component is present 

 Poor synchronization for long series of 1-s or 0-s 

 

Polar Line Coding: Polar return to zero 

 Uses two non-zero voltage level to represent digits 1 and digit 0. +ve for 1 and –ve 

for 0. Must return to zero halfway through each bit interval. 

 No DC component is present. 

 Perfect synchronization for long series of 1-s or 0-s. 

 Twice the bandwidth required for polar non-return to zero, 𝐵. 𝑊 ∝
1

𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ
. 
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Manchester Line Coding 

 Inversion at the middle of each bit interval is used for both synchronization and bit 

representation 

 Digit 0 ⇒ neg-to-pos transition, 1  ⇒ pos-to-neg transition 

 Perfect synchronization for long series of 1-s or 0-s 

 There is always transition at the middle of the bit, and maybe one transition at the 

end of each bit. 

 Fine for alternating sequences of bits (10101), but wastes bandwidth for long runs 

of 1-s or 0-s. 

 Used by IEEE 802.3  (Ethernet). 

 No DC component is present. 

 Twice the bandwidth required for polar non-return to zero. Two pulses are used to 

represent one bit. 

 

 

Bipolar Line Coding 

 Uses two non-zero and zero voltage level for representation of two data levels. 

 0 = zero level; 1 = alternating positive and negative level. 
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 If first bit 1 is represented by a positive amplitude, second will be represented by 

negative amplitude, third by positive, etc. 

 Less bandwidth required than with Manchester coding (for any sequence of bits). 

 Loss of synchronization is possible for long runs of 0-s. 

 No DC component is present. 

 

 

 

2B1Q (2 Bipolar to 1Quaternary) Line Coding 

 Data patterns of size 2 bits are encoded as one signal element belonging to a four-

level signal. 

 Data is sent two time faster than with polar non-return to zero. 

 Receiver has to discern 4 different thresholds 
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Optimum Receiver and Digital Binary Transmission 
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Digital Communication Block Diagram 



Assumptions
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Transmitter and Receiver Sides in Digital Communication System



Thermal Noise

wide



Effect of Noise and Channel on Received Data



Basic Elements of the Receiver



Basic Elements of the Receiver

•

Sara Totah
Rectangle



Optimum Receiver and Digital Binary Transmission 



Theorem on the Optimum Binary Receiver



Theorem on the Optimum Binary Receiver



The Q-Function 



Transmitter and Receiver Sides in Digital Communication System



Matched Filter and Performance of the Optimum Receiver



Theorem on the Optimum Binary Receiver



Output of a Matched Filter

•

Filter output is 
maximum at t=T. 
Hence, signal power 
is maximum



Matched Filter Derived from Signals

s1(t)-s2(t)

T

-T

s1(-t)-s2(-t)

T

h(t)=s1(T-t)-s2(T-t)

t

t

t

2A

2A

2A

Step 2: Rotate 
around the y-axis

Step 3: Translate 
to the right by T

Step 1: Subtract s2 
from s1.



Equivalent Implementations of the Optimum Receiver

Outputs at both 
nodes are 
equivalent. 

Verify as an 
exercise



Example: Antipodal Binary Transmission 

Probability of error decreases as the signal to noise ratio increases



The Q-Function 



Baseband Data Transmission (Low-pass Channel) 



Baseband Data Transmission 

2



Baseband Data Transmission 
• Generation: Convert data into polar non-return to zero format

3



Baseband Data Transmission 

4

Optimal BER:

Probability of Error: 
Receiver Implemented 
as a Correlator
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General Result on the Power Spectral Density of a digital M-ary baseband signal

The time-domain representation of a digital M-ary baseband signal is 

5

𝑣(𝑡) is a unit-baseband signal, and symbols in 

different time slots are assumed independent. 

Under these assumptions, the power spectral 

density of 𝑠(𝑡) is given by 

s(t)



Power Spectral Density of the Polar Non-return to Zero baseband signal

6

1/21/2

+1-1

z

P(Z=z)

pmf of Z



Power Spectral Density of the Polar Non-return to Zero baseband signal

7

• The general power spectral density formula

• Substituting: E(Z)=0, Var(Z)=1, and the Fourier transform of the rectangular 
pulse v(t), we get:
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Bandwidth of the Polar Non-return to Zero baseband signal

8
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Binary Phase Shift Keying (BPSK) 

1

Binary Digital Bandpass Modulation
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Binary Phase Shift Keying: Signal Representation 

2

𝜏 = 𝑛𝑇𝑐
𝜏: is the time allocated
to transmit the binary digit.
𝑇𝑐=1/𝑓𝑐 is the carrier period

In this figure n=5

𝜏 = 𝑛𝑇𝑐
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Binary Phase Shift Keying: Generation 

3
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Binary Phase Shift Keying: The Optimum Receiver 

4

Optimum Receiver Implemented as a Correlator Followed by a Threshold Detector

Probability of Error: 

Optimal BER:

𝑬 = න
𝟎

𝝉

𝒔(𝒕) 𝟐𝒅𝒕

With 𝝉 = 𝒏𝑻𝒄
𝑬 = 𝑨𝟐𝝉/𝟐

Verify this result
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Binary Phase Shift Keying: Power Spectral Density and Bandwidth

5

𝒔 𝒕 = 𝒎 𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕)Baseband Power Spectral 
Density of m(t)

Bandpass Spectral Density

Bandwidth of BPSK s(t) 

(twice the data rate); 

Same as that of BASK
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Extra Material on the Power Spectral Density 

6

The Wiener –Khintchine Thorem:

The power spectral density 𝐺𝑋 (𝑓) and the autocorrelation function 𝑅𝑋 𝜏 of a

stationary random process 𝑋(𝑡) form a Fourier transform pairs:

𝐺𝑋 𝑓 = ∞−
∞

𝑅𝑋 (𝜏)𝑒
−𝑗2𝜋𝑓𝜏𝑑𝜏 (Fourier Transform)

𝑅𝑋 𝜏 = ∞−
∞

𝐺𝑋 𝑓 𝑒𝑗2𝜋𝑓𝜏𝑑𝑓 (Inverse Fourier Transform)



Example: Mixing of a random process with a sinusoidal signal.

• A random process 𝑋 𝑡 with an autocorrelation function 𝑅𝑋 𝜏 and a power spectral 
density 𝐺𝑋(𝑓) is mixed with a sinusoidal function cos(2𝜋𝑓𝑐𝑡 + 𝜃) ; 𝜃 is a r.v uniformly 
distribution over (0, 2𝜋) to form a new process

𝑌 𝑡 = 𝑋 𝑡 cos(2𝜋𝑓𝑐𝑡 + 𝜃).  Find 𝑅𝑌 𝜏 and  𝐺𝑌 𝑓
• Solution: We first find 𝑅𝑌 𝜏

• 𝑅𝑌 𝜏 = 𝐸{ 𝑌 𝑡 𝑌 𝑡 + 𝜏 }

• = 𝐸{𝑋 𝑡 cos(2𝜋𝑓𝑐𝑡 + 𝜃) ∙ 𝑋 𝑡 + 𝜏 cos 2𝜋𝑓𝑐𝑡 + 2𝜋𝑓𝑐𝜏 + 𝜃 }
When 𝑋 𝑡 and θ are independent, then

• = 𝐸 𝑋 𝑡 𝑋 𝑡 + 𝑇 𝐸{cos 2𝜋𝑓𝑐𝑡 + 𝜃 ∙ cos 2𝜋𝑓𝑐𝑡 + 2𝜋𝑓𝑐𝜏 + 𝜃 }

• = 𝑅𝑋 𝜏 𝐸{
cos 4πfct+2πfcτ+2θ +cos 2πfcτ

2
}

• 𝑹𝒀 𝝉 =
𝑹𝑿 𝝉

𝟐
∙ 𝒄𝒐𝒔𝟐𝝅𝒇𝒄𝝉 ; 

• The power spectral density is

• 𝑺𝒀 𝒇 =
𝟏

𝟒
{𝑮𝑿 𝒇 − 𝒇𝒄 + 𝑮𝑿 𝒇 + 𝒇𝒄 }

• Which is quite similar to the modulation property of the Fourier transform. 7
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Binary Amplitude Shift Keying (BASK): Signal Representation 

1

𝜏 = 𝑛𝑇𝑐
𝜏: is the time allocated
to transmit the binary digit.
𝑇𝑐=1/𝑓𝑐 is the carrier period

𝑅𝑏 =
1

𝜏
: 𝐷𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 bits/sec

𝜏 = 𝑛𝑇𝑐

In this figure n=5
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Binary Amplitude Shift Keying : Generation 

2

m(t): Unipolar non-
return to zero

s(t)

c(t)

c(t)

𝒔 𝒕 = 𝒎 𝒕 𝒄(𝒕)

NOTE: BASK is also called ON-OFF Keying
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Binary Amplitude Shift Keying : The Optimum Receiver 

3

Optimum Receiver Implemented as a Correlator Followed by a Threshold Detector

Probability of Error: 

Optimal BER:

𝑬𝟏 = න
𝟎

𝝉

𝒔𝟏(𝒕)
𝟐𝒅𝒕

With 𝝉 = 𝒏𝑻𝒄
𝑬𝟏 = 𝑨𝟐𝝉/𝟐
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Binary Amplitude Shift Keying: Power Spectral Density

Let m 𝑡 be the unipolar NRZ signal with autocorrelation function 𝑅𝑚 𝜏 and power spectral 
density 𝐺𝑚 𝑓 . 

• You can easily verify that the unipolar non-return to zero signal 𝑚 𝑡 is related to the polar 
non-return signal 𝑚′ 𝑡 (used in the generation of the BPSK)  by:

• 𝑚 𝑡 =
1

2
(1 + 𝑚′ 𝑡

The autocorrelation function of m(t) is 

• 𝑅𝑌 𝜏 = 𝐸 𝑚 𝑡 𝑚 𝑡 + 𝜏 =

=  𝐸
1

2
(1 + 𝑚′ 𝑡

1

2
(1 +𝑚′ 𝑡 + 𝜏 =

1

4
+

1

4
𝑅𝑚′(𝜏);

Note that for the polar-NRZ  𝑬 𝒎′ 𝒕 = 𝟎

• The  power spectral density of m(t) is:

• 𝐺𝑚 𝑓 =
1

4
𝛿 𝑓 +

1

4
𝐺𝑚′(𝑓)

4

Unipolar NRZ

Polar NRZ

m’(t)

m(t)
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Binary Amplitude Shift Keying: Power Spectral Density
The Wiener –Khintchine Thorem: The power spectral density 𝐺𝑋 (𝑓) and the autocorrelation 

function 𝑅𝑋 𝜏 of a stationary random process 𝑋(𝑡) form a Fourier transform pairs:

• 𝐺𝑋 𝑓 = 
−∞

∞
𝑅𝑋 (𝜏)𝑒

−𝑗2𝜋𝑓𝜏𝑑𝜏 (Fourier Transform)

• 𝑅𝑋 𝜏 = 
−∞

∞
𝐺𝑋 𝑓 𝑒𝑗2𝜋𝑓𝜏𝑑𝑓 (Inverse Fourier Transform)

• The  power spectral density of m(t), the unipolar NRZ is:

• 𝑮𝒎 𝒇 =
𝟏

𝟒
𝜹 𝒇 +

𝟏

𝟒
𝑮𝒎′(𝑓)

• In the previous video we saw that if a random process 𝑋 𝑡 with an autocorrelation function 𝑅𝑋 𝜏 and 
a power spectral density 𝐺𝑋(𝑓) is mixed with a sinusoidal function cos(2𝜋𝑓𝑐𝑡 + 𝜃) ; 𝜃 is a r.v
uniformly distribution over (0, 2𝜋) to form a new process

𝑌 𝑡 = 𝑋 𝑡 cos(2𝜋𝑓𝑐𝑡 + 𝜃). 

then the autocorrelation function and power spectral density of Y(t) are given by:

• 𝑅𝑌 𝜏 = 𝐸 𝑌 𝑡 𝑌 𝑡 + 𝜏 =
𝑹𝑿 𝝉

𝟐
∙ 𝒄𝒐𝒔𝟐𝝅𝒇𝒄𝝉 ; 

• 𝑮𝒀 𝒇 =
𝟏

𝟒
{𝑮𝑿 𝒇 − 𝒇𝒄 + 𝑮𝑿 𝒇 + 𝒇𝒄 }

• Hence, 𝑮𝑩𝑨𝑺𝑲 𝒇 =
𝟏

𝟒
{𝑮𝒎 𝒇 − 𝒇𝒄 + 𝑮𝒎 𝒇 + 𝒇𝒄

5

Our Problem: 𝒔 𝒕 = 𝒎 𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕 + 𝜃)



Binary Amplitude Shift Keying : Power Spectral Density and Bandwidth

6Bandpass Spectral Density

Power Spectral Density of the 

baseband unipolar NRZ m(t)

Bandwidth of BASK s(t) 

(twice the data rate); 

Same as that of BPSK

Power Spectral Density of the 
bandpass modulated signal s(t)

𝒔 𝒕 = 𝒎 𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕)



Non-coherent Demodulation of the Binary ASK Signal 

7

The demodulator which uses the signal difference 𝑠1 𝑡 − 𝑠2 𝑡 = 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) is called coherent demodulator

In non-coherent demodulation, there is no need for the carrier frequency at the receiver. The basic 

elements of the receiver are a bandpass filter with center frequency at the carrier, an envelope detector, 

and a threshold comparator. The receiver is simple, however it is not optimal in terms of the probability 

of error. The details are shown in the following block diagram



Binary Frequency Shift Keying (BFSK): Signal Representation 

1



Binary Frequency Shift Keying (BFSK): Signal Representation 

2

Orthogonality condition

𝜏: is the time allocated
to transmit the binary digit.
𝑇𝑐=1/𝑓𝑐 is the carrier period

𝑅𝑏 =
1

𝜏
: 𝐷𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 bits/sec 

𝒇𝒄 =
𝒏𝑹𝒃

𝟒
= 𝒌𝑹𝒃

∆𝒇 =
𝒎𝑹𝒃

𝟒
Note that 𝒔𝒊𝒏 𝒙 = 𝟎
when 𝒙 = 𝒏𝝅



Binary FSK : Generation using the Single Oscillator Method 

3

m(t): Polar non-
return to zero



Binary FSK : Generation using the Two-oscillator Method

4

FSK: modeled as a sum of two ASK signals

1- m(t)

• This representation will be used to find 
the power spectral density of s(t) since 
it is envisaged as the superposition of 
two ASK signals. 

• The power spectral density of an ASK 
signal was derived in a previous video 
titled: Binary ASK



Binary FSK : Coherent Demodulation

5



Binary FSK : Probability of Error

6



Binary FSK : Power Spectral Density

7



Binary FSK : Power Spectral Density and Bandwidth
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Binary FSK : Non-coherent Demodulation
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